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Preface

The application of differential game theory to the
analysis of aerial combat offers the fascinating prospect
of evaluating weapon systems and combat tactics against
an intelligent, evasive opponent. Unfortunately, it seenms
the more complex the model, the harder it is to maintain
validity. Consequently differential gaming has not yet made
& substantial impact on realistic combat analysis.

One of the linmiting factors has been that each player
has had fixed roles of either pursuer or evader. This work
is the result of my efforts to evaluate a method which allows
for a changz of roles. The study is based on a general pur-
pose payoff first sugzested in the Doctoral Dissertation of
Major Urban H. D. Lynch, then at the Air Force Flight Dy-
namics Laboratory. Although both the game model and the
constant speed, horizontal dynamic model are really too
simple, a particularly fascinating result was trajectories
that correspond to realistic scissors maneuvers.

I am very grateful to my advisor, Professor Gerald
M. Anderson of the Air Force Institute of Technology, whose
knowledge and advice were invaluable. I am also grateful
to many of my fellow students, in particular Captain Robert
D. Powell, without whose practical experience of the problen,

1 woald have been fishing in murkier waters.

P. G. Jenkins
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Abstract

The problem investirated is a method of role dclermination,
using a general purpose pavoft, in a differential game model
of aerial combat. Role determination iz taken to rean a
corbatant's sclection of a combat objecvive, based on his
relative advaatage.

The class of game is two person, free time, zero sum
and perfect information. The aircraft dynamics are restricted
to constant speed in the horizontal plane. The controls for
both players are limited turn rates. A fixed weapon range
establishes a terminat ccnetraint around one player, Using
limits on the payoff, a game of kind is fornulatzcd to give
successful termination at weapon range for both p:iayers. The
piyoff is based on angular terminal requirements, and allows
for & variety of weapons. Closed form solutions are used to
find the solution in *r~ lars. oy cnnstructing trajcctories
and surfaces backwards from cost criteria on the terminal
surface.

A complete solution is not obtained, but the existencs
of :svlated singular arcs for this type of gume is confirmed,
and progress is mad2 towards fully partitioning the gime

space. Many resulting traject.ries correspond to realistic

scissors maneuvers, and 2 methaod of partial role determination
is proposed, using such trajectories to indicate regions of

advantage.
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I. Introduction

Experience over the last decade has re-emphasized
the importance of aerial combat in air warfare. This has
resulted in a number of different efforts to improve
the design and operation of combat aircraft and their weapons
by realistically modelling the combat situation.

The energy maneuverability apprcach is useful for
reaching and aaintzining a generally advantageous position,
though with no guidance as to what to do with that position
(Ref 4). More extensive optimisation techniques overcome
this drawback to some extent, but are limited *o 2 restricted
target model (Ref 2). Computer simulations have been designed
to combine energy considerations with certain establishad
gnidance 1aws and rolv logic (Ref{ 12). Using this method
realistic encounters resulc, and useful trade off studies
are pessible, though they are limited by the set of simulation
rules used. Manual combat simulators are powerful tools,

combining “seat of the pants" and scientific analysis; they

are, however, highly subjective. At completely the opposite

end of the spectrum is gaming, and in particular, continuous
(differential) gamin3 (Ref 9).

The potential advantage of gaming is the introduction
of active opponents into a completely aralytical modei. How-
ever, in applicaticn ty realistic probiems, success nas been
limited. One limitation hss been that many applications have
use¢ a pursuit-evasion game, where one plaver is a pursuer,

snd the other is an evader. The pursuer's aim is to destroy
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the evader, whose aim is to escape. The roles of each player
are fixed throughout the asame. Realistically however, in
combat between relatively similar aircraft and weapon systanms,
each wishes to destroy his cppomnent. Allowance must be made
for this in a game analysis.

The purpose of tris investigation is to allow for
a change of roles bv using a generzl purpose payvoff. The
basic game mofel ic zero sum, two person, free time, and
perfect ixfornation. The dynamies are restricted to a planar,
constant velocity model, in which each player ha:s a limited
turn capability.

The problea is discussed ir Chapter II. The origins
and nature of the problem are related to general ideas of
role determination, and the thesis objective is stated. Ganme
and dynamic nodels are established, with accompanying assumptions
and constraints. Finally the paycoff is discussed, and general
criteria for determining the outcome of the game are set un,

Chapter 111 formulates the game fully: the payoff i<

modified to the game, and the necessary conditions then ap-

plied %o the problem,

In Chapter IV closed form solutions to the game are
derived fur arcs of constant control, z=nd for game surfaces
located at arc junctions.

In Chapter V the closed {orm solutions are used to find
2 complete solution in the large.

Chapter VI discusses the rol: determination problenm .
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general, and in relation to the results. Some compariston
with other game models is made,

It is feit this study makes a definite centribution
to the differential gume modelling of »erial combat. The use
of the Lynch payoff in the game results in closed form solutions,
which generate :rajcctories corresponding to practical scissors
maneuvering. Aithough complete analysis awaits a full sclution,

significant extensions are made to the knowledge about this

type of zame and payoff, Finally, a method is proposed for

determining regions of advantage and disadvantage to either

combatant.
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1T, Discussion of the Problenm

Origins of the Problenm

The problem considered here is an extension of work
carried out at the USAF Flight Dynamics Laboratory in the
use of differential gaming to model air-to-air combat.
Specifically, it is a continuation of work on a general
purpose payoff begun by Lynch in his Doctoral Dissertation

(Ref 9:174).

Nature of the Problem

A serious limitation in many of the results of Reference
9 is that the aim (objective) of each aircraft (player) is
fixed throughout che game; usually one aircraft is trying to
escape, and the other to capture. Some useful indications
of the form and sensitivity of escape and capture regions
have resulted frown this work, However, the optimal control
sequences (strategies) produced, sonetimes differ considerably
from those expected from experience, thus questioning the
validity of that approach. For example, the siower machine,
unless considerably more maneuverable than its opponent, will
always, under optimal play, be captured. Thus the slow evader
will invariably turn away from the pursuer until, at some
stage, he fiies directly away, and is then caught directly
from the rear (Ref 9:80)! 1In actual combat, the objectives
may change. Assuming the performance of each aiicraft and its

weapon system is in roughly the same class, then usually
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each combatant is, at some stage, hoping for success. Thus
the strategies arec not necessarily ones of pure pursuit or
escape and should reflect an aggressiveness by each combat-
ant.

Based on Baron's approach to this "dogfight" situation
(Ref 3:565), the problem of secrial combat is considered to
consist of tws main parts:

1. Given the staies of two players, determine the

role ot each. Here role determination is taken to mean:

a. Nhich player has an advantage, and to what extent?

b. Based on this relative advantage, what is the
objective of each player?
2. Given the roles, what are the optimal strategies
for each player?
Of the two major parts, role determination is the unique and
vital aspect of the combat problem. Other work has been done
on role determination (Refs 10, 11); the important difference
here is that the payoff emphasizes the relative angles

betwszen the combatants at termination.

Thesis Objectives

The primary objective is to study the ralidity of
using the general purpose payoff in role determination. The
secondary objective, although to a large extent inseparable

from the first, is to develop a technique for using this pay-

off to analyze fully simple problems, and to form a base for

the addition of more realistic aircraft dynamics.
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Basic Game Model

The combat is modeled as a2 two person (aircraft), free
time, zero sum, perfect information game. A zero sum game
implies pure competition, and although combat games are
generally regarded as being in this class, they need not
necessarily be so. For example, if twc opponents are both
seeking to close with each other, they may both co-operate

to minimize the time taken to do so. Thus a more realistic

model should be partly co-operative (f.e. non zero sum).

Games of that type are considerably more complicated, and
thus it is felt that results hased on a zero sum model are
a necessary first siep. The information assunmption is
unrealistic under any circumstances: huwever, it is felt
that obtaining a workable technique based on perfect in-
formation is a necessary simplificution in the initial in-

vestigation of the payoff,

Dynamic Model

Ir nodeling the aircraft dynamics, the common assumption
of a point mass, a flat earth, and constant gravity are made.
In addition, the speed and altitude of each aircraft is also

held constant. The last two are very limiting, but work has

indicated that including these as variables in the formulation
increases the number of dimensions to a point that makes in-

terpretation of results vary difficult. (Refs 6:47, 9:11S).

These references also indicate that for a given game formulation,

simple dynamic models zive a fajr indication of what to expect

6
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from more complizated dynanics (Refs 6:46, 9:193).

State and Contvrol Variables

The above assumptions result in a six dimensional
unbounded game space consisting, for each aircraft, of two
position co-ordinates in a constant altitude horizontal plane,
and a heading. Six dimensions lead to relatively straight-
forward dynamic eouations; however, the greater the number
of variables, the more difficult it becomes to interpret the
~esults. What is required for interpretation is as few
state variables as possible, having close correspondence
to the states which pilots actually use. With a relative
co-ordinate system on one aircraft, the number of states
is reduced to three.

The aircraft are designated A and B, and a body fixed

otating co-ordinate system is located on A, with its X axis
in the direction of the longitudinal axis through A's nose.
In this dynamic model this direction corresponds to the dir-
ection of A's velocity at a given time., As shown in Fig, 1,
three independent state variables remain. The state vectors
used are {x(t), y(t), z(t)} and {r(t), 6(t), z(t))}, and it is
convenient to use both in the development.

The controls are the rates of turn of A and B, UA (t)

and UB (t), respectively. Each is assumed to be constrained

in either direction by a constan maximum turn rate, UAMAX

and Ugnax’ respoctively. To be rcalistic, a model should

include instant2ncous and sustained max-rate capability,

e — i at ot
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Aspect angle

Angle-Off

Fig. 1. Co-ordinate System

as well as changes due to limits on weapon tracking and re-
lease (Ref 12:3). However, in relation to the simplified
aircraft dynamics, constant maximum turn rates are reasonable.

The state equations of motion are thus
x Vg cos z ~ VA + UAy

vV, sin z - U x

B A
Ug - UA

V’ cos (z-0) - VA cos O

1 .
3 (V' sin (z2-8) « VA sin 8) -U

A

Ug - U,
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4 spced of

VB speed of

and both VA and VB are constant.

The Terminal Constraint

The conditions needed for a successful conclusion
by either A or B (and conversely failurc for the other}
depend largely on their respective weapon systexs. The
most common condition used to end ganes is a fixed final
range from the target. 1In the plarar case, this gensrates
a circle of radius L (the weapon ranye) in thes xy vlanc
around one of the combatants (Fig. 1, page 8). Otxer zpproaches
have been used to éreate 49re realistic terminal conditions:
more complex areas such as elliptical kill probavility
regions rotating behind each combatant (Ref 6:7), and s¢imple
ones such as "gun spikes" pointing directly forward of cach
aircraft (Ref 10). Uss of elliptical regions in the role
problem requires two such areas rotating behind the respective
aircraft; this rapidly becomes unwcrkable. The "gun spike"
concept has been used for role determinstion with a range
payoff, but suffers from being ¢ "borcsight only" condition.
The popularity of a circular terminal condition is
partly due to the relutive ease of obtaining closed form
solutions, and it is largely for that reason it is used in
this study. The condition is defined as

«-LZIWIO
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2 1 2.4=0 (2-8)

Te

wherve (xf, Ve zf) and (rf, ef, zf) are the final states and
. is the weapon range. This constraint has to be satisfied
for the game to end; how it ends, however, is deteramined by

the payoff,

The Payoff

For this class of game, the payoff (or cost function)
represents the objective of the players Throughout the game.
It is thus fundamental to question of role. Lynch's general

purpose payoff, with A minimizing snd B maximizing is

2/ 6 2/6
J = & cos ( 75) + b sin (EA) +
1 $3 tf

c cos 6 dt
5]

where a, b, ¢ are constant weighting factors and BA, BB are
the angles hetween the velocity vectors of A and B and the
position vector between them (Fig. 1, page 8).

Changing the form of Eq (2-9) and rewriting in terms of

the polar co-ordinate system (r, 6, z), the payoff becomes

{a+d) 1 -
J = 3 2 [a cos (zf ef) + b cos Bf] +

(2-10)

tf
¢ cos (zf-ef)J.to dt

The middle terms represents the attempt by each player tc end
the game (be it success or failure) with his best possible com-
bination of angle of{ and aspect angle. The last term indicates

that when sz - Ofl is small, then time becomes a critical
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factcr. Increasing the importance of this term is intended

to polarize the roles of each player when termination is close,
hy the pursuer sceking to terminate quickiy, and the evader
trying to delay. The payoff was investigated ia Reference 9
for two simple dynamic models, with a=b=0., The emphasis

in this work is the case were c=0 (time is not included

explicitly in the payoff).

Outcomes to the Game
There are four possible outcones to a combat {Ref 3:41);
letting x denote the state of the game, these outcomes are
described by the terminal constraints
X € WA + A is successful and destroys B (2-11)
€ wB + B is successful and destroys A (2-12)
x € wA n wB = wAB -+ Both A and B are des-
troyed (mutual kill) (2-13)
x € W;_U_E; = ¥, = Neither Anor B des-
troyed (draw) (2-14)
where WA and OB are the sets of states corresponding to suc-

cessful outcomes for A and B respectively. 1In its basic forn,

the game terminutes the first time x enters either Vs Vg, oOT

°As' If it enters none of these set: (i.e. x € wD), there is

a draw (the result of the game is inconclusive).

For player A, outcome (2-11) is obviously most preferable,
and outcome (2-12) is least preferable. The preference order-
ing of outcomes (2-13) and (2-14) is not so obvious (Ref 3:64).

Using the single general purpose payoff J to represent
the outcome criteris in a2 zero sum game, the outcomes (A

11
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minimizing and B maximizing) are defined as:

J < JA + X € wA + success for A

JB - 5f € WB -+ success for B

J
< d <dpax. € WA V) &; + draw

where J <J <

min < and JB >3

A
the mutual kill outcome will not occur with this payoff

max

unless JA = JB.
Eqs (2-15) to (2-17) enarle a game of kind to be
formu'ited. The problem of sclution in the large is to

determine which of the outcomes result from any set of

starting points in the ganme space.
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(:) I11. Problen Formulation

The purpose of this chapter is to formulate a differ-
ential game on the basis of Chapter II and the theory summar-
ized in Appendix A. The Lynch payoff is ussd to estsblish a
game of kind, and the influence of the weigniize factors in
the payoff is considered. The necessary cond’tions are ap-

plied, and possible control combinations are derived.

Payoff Formulation

The Lynch payoff of Eq (2-10) can be expressed as

tf
J =P s+ Q fto dt (3-1)
A a+h 1
where P = 5 -3 (a cos (zf—ef) + b cos ef)
and Q = ¢ cos (zf-ef)

As time is not usually the overriding factor in combat (apart
from total engagement limitations), it is not considered here

explicitly in the payoff. With c=0, the payoff becomes

Jeg o 5%& - % (@ cos (2,-8.) - b cos 8,) (3-2)

where L is the angle off, and (zf-ef) is the aspect angle of
B w,r.t. A (Fig. 1, page 8 ).

The relationship of the paycff to the terminel surface
of Eq (2-8) is shown in Fig. 2 (paze 14). Linesof constant
payeff (isocosts) are drawn on a flattened t+rminal surface
for a=b=1. The isocosts enclosc two areas, one around A's
best success point, and the other around B's. If limits are
set on the payoff, 2 game of kind is established, and

13
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the isocosts for those limits enclose areas that represent
the allowable ze and Sf combinations for a successful out-
come by A an B. Using Eqs (2-15) to {2-17), in terms of

¢, the outcomes (A minimizing and B maximizing) are
0< ¢ < °A + success for A (3-3)
¢g < & < asb -+ success fer B (3-4)
ép < ¢ < ¢y - inconclusive draw (3-5)

where @A and ¢y may ce set to reflect the upper limits of
A and B's weapon system at terminal range. The neutral out-
come ¢N is given by

oy = 2R (3-6)

and includes head-on and tail-to-tail outcomes as draws
(Fig. 2, page 14).

The size of the succese . areas can be adjusted by the
limits set on the nayoff (¢A and ¢B), and their shape can

be adjusted by the weighting factors a and b. Increasing a,

increases the relative importance of (zf - 6:): and similarily,

increasing b, increases the relative importance of Bf. The
effect this has on the shape of success areas is shown in
#1g. 3 (pagel16). In this way, the payoff can be adjusted

o represent the angular conditions required at teremination
for a wide range of wezpon systems. For example, consider
that both A and B require a close approximation to boresight
for their particular weapon systems, and have to be within a

certain aspect angle to the rear of their apgponent. Wil the
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f=— TP - e - -

¢=0.02

-490 -30

Boresight line
for B

Boresight line
for A

e e+ < peenne = - ._

Fig. 3. Variation of Isocosts with Weighting Factors
co-~.1inate system used, this implies A would require only
a small variation in iefl, implying a large value of b in
the payoff; whereas B would require only a small variation
in |z, - 0., implying a large value of a in the payoff. This
s shown in Fig. 4. It is interesting that because of the
use of a .otating co-ordinate system, the form of the payoff
for success by A and B is different, even though their con-
ditions for success are the same. Within the limits of .\is
study, this difference, and the implied lack of a clearly

defined neutral outcome, is not considerec explicitly.

Application of Necessary Conditions

The Hamiltonian is formed from Eqs (2-1) to (2-6) as
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— - — =

0f Range

Zf Range

A's success

(a)

ef Range

B's success

)

Fig. 4. Close to Boresight Terminstion for A and B

H = HA * Hl + Ho

where HA = SAUA

=
L ]

S_U_ and SB = A

B BB z

0 VB (lx c03 2z ¢ ky sin z) - kx v

Ag
VA(;— sin 8 - Ar cos 6)

and SA = X‘Y - xyx - Xz = -xa -2

A

A
V' (Rr cos (z2 - 8) + ?ﬂ sin (z - 8)).

Co-states. The zo-state equations are

(3-7)
(3-3)

(3-9)

(3-10)
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y z-UA Ax
: = VB()‘x sin z - Xy cos 2)

and in polar form

b\

. LI
Ar = ;—(VA sin 6 + VB sin (z - €))

AL = -)\r(VA sin 8 + V_ sin (z - 8)) -

8 B

(3-15)

2
22V, cos B -V, cos (z - 8))

A
. ' - . _8 - .
Az = xr‘B sin (2 8) T VB cos (z 8) (3-16)

Transversalitv. Adjoining the constraint of Eqs (2-7)
and (2-8) to the payoff of Fq (3-2) gives the transversality
conditions.

i s
A =-—. ((2 cos z, + b) - — a sin z.} + vx
X 213 f Yg £ £
": Yg
A = = (;— (a cos 2z

+ b) - a sin z.) + vy
Ye 2L3 £ f £ £

Azf - %L (xf sin z¢ - yfcos zf)

and in polar form

1
Xef =3 b (sin Of - a sin (zf - Of))

P T

—
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Also, as time is free
H{tf) = H(t) =0 (3-23)
The unknown multiplier v can bc eliminated (Appendix B
page 77 ) to give
r, - 3 -
ny = [L sin e (UA b sin Gf Up 2 sin (zf ef)) +

(VB cos zf-VA) (b sin ef - a sin (zf-ef))]/ (3-24)

ZL(VB cos (zf-af) -V  cos ef)

A

xg = (2L Ayf cos 6 - (b sin 8.~ a sin (Zf°°f))]/

(3-25)
2L sin Bf

Non-Singular Controls. H s linear in U, and UB so

A
singular arcs are possible: for the non-singular case minA

max, H gives the possible controls 0,, op as

B

" -(sgn SA) ]

Amax (3-26)
og = (sgn Sp) Upy,y (3-27)

Singular Controis. Necessary conditions for A to have

a singular arc give
* Axy = Az and Az = -Aa

0 and A_ = -rX_ tan 6
0 T

0
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(SA)UA = -VA Xx > Xx (3-31)

hence A may have a singular contral of zero turn rate,

Similarly, the application of singular necessary conditions

for B give

(3-32)

< tan z and r Xr tan (z-0)
(3-33)
(3-34)

> 0 for :% < zg <

(3-75)

.4 -
Xx < 0 for 3 < LS < T

Hence B may alec~ have a singuisar control of zero turn rate.

1f the conditions of Eqs (3-28) to {3-35) are all satisfied,
then both A and B may be singular at the same time. Satisfying
these conditions requires that y(t) = 0 and 2(t) = 0, 180°.
Consequently, a direct tail chase, 2 head-on or & tail-to-

tail are the only situations where both may be singular,

Control Combinations. The non-singular controls re-

present maximum rates of turn fer A and B in either direction,
the singular controls represent straight dashes. There are
thus a total of nine possible control combinations (oA =

, 0 with o = ¢ ,» 0).

* UAnax = Ullax
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IV. Closed Form Solutions

Analysis is very much easier if as nuch of the gane
as possible is solved analytically. This chapter presents
closed form results for the states and co-states along
continuoue control arcs, in terms of the time-to-go, and
the final states and co-states. To solve the game fully
it is necessary to identify the various surfaces separat.ag
these arcs. Some closed form expressions are derived for
these surfaces. Finally these solutions are related to the
terninal surface and payoff. Details of the derivations

are contained in Appendix B.

States and Co-states

Over arcs on which the controls Sa and op are constant,
tae state and co-state equations are linear and can be solved

fairly easily, at least in the cartesian form (Appendix B

pages 77 to 81 ), to give, for non-singul-Z arcs (oA =+ U

Apax,

9g = t UBnax)

x(t) = Xg €OS O,t ¢ ¥, sin ot ¢ Ry [sin (oAt-zf) +
(4-1)
sin ((°n'°A) t + zf)] - Ry sin g,t

y(t) = “Xe sin Ot +y g cos oAt . RB [cos (oAt—zf) -

cos ((on'“A) t + zf)] . RA(l— cos oAt) (4-2)
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cos 0, t ¢ Ayf sin 9, t

~A sin Gt + A cos g, t

Xe Ye

OB Ost
Xzf = 2R, sin - ve cos (—- ¢ zf) +

t
A sin (UB + z2.)]
Xz -5 f

where R\ = VA/°A and R = VB/°B' the radii of turn of

B
A and B respectively, and the final time at the end of
8 given arc is zero, with time backwards along the arc being
negative (t° <0, t <0, te = 0).

For singular arcs modified solutions are generated;

for singular A (0A =0, op * * uBnax)

x(t) = xg - Vot ¢ RB (sin (g ¢ th) - Sin zf)

y(t) =y, - Ry (cos (o, t ¢+ z.) -~ cos zg)
z(t) 1t apt

Ax(t)

Ay(t)

at

ogt o
5 ¢ zf) sin -

Xz(t) ‘ - 2RB A‘f sin

and for singular B (oA =2 U = 0)

Amax’ %8

x(t) = Xe Cos O, t ¢+ (yf - RA) sin 0, €t

A

VB t cos (zf - °A t)

y(t) = -Xg sin Sy t . (yf - RA) cos g, L e

vV, t sin (zf - °A t) *+ R

B A

22
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z2(t) = zf - OA t (4-15)

Ae) = Xxf cos g, t + Ayf sin g, t (4-16)

Ay(t) ")xf sin gyt Ayf cos O, t (4-17)

Az(t) = xzf =0 (4-18)

Using Eqs (4-1) to (4-18) nine different arcs can be con-

structed from the nine possible combinations of control.

Game Surfaces

The game space is partitioned by surfaces which re-
present discontinuities in the controls and junctions
between the varjous types of arcs. For a full solution to
the game it is necessary to identify these surfaces, and the
regions they partition. Appendix A discusses some of the
more important surfaces, and the conditions necessary for
their sslution,

Switching Surfaces. Switching of A's controls (other
than to zero) occurs when SA = 0 and SA # 0. Similarly
switching for B (other than to zero) occurs when SB = 0
and S; # 0. Each of these conditions defines a five dimension
surface in the (x-1) space, which is reduced to four dimensions
by the free time conditions of Eq (3-23). For a given arc,

a closed form suvlutionn can bec found that gives the switching
tine (backward from the final conditions) in terms of the
final states and co-states. The switching time is then a

paraneter that specifies a point in the switching surfoce.
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2

Sp=0
S .40

Switching Surface
Singular Arc

Pig. S. Switching Surfaces and Singular Arcs
Fig. 5. shows a two dimensional illustration of a switching
surface for A.
A's Switching Suface. For an A switching surface,

the condition SA = 0 gives

where the states and co-states of a junction point between

Axsys Ay x oA, =0 (4-19)

an arc and the surface are (55’ As). Sutstitution in Eq (4-19)
of the closed form state and co-state solutions for an

arc gives

)xf!yf - RA(I - cos 0,t.)] - Ayf{xf -

L sin °Ats] - A,f -0

24
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vhere tg is the time (negative) at which the control switches
going backwards along the arc (ts <0, te = 0). Hence Egq
(4-20) and Eqs (4-1) to (4-3) are a parametric solution for
the switching surface, The additional free time requirement

of H= 0 in Eq (3-23) gives

A,y - Xy x) op ¢ Vg (A, cos x_ ¢
$ s s (4-21)

by sin x_) - A,V = 0
ys s xs A

which, on substitution of Eqs (4-1) to (4-6) reduces to

R, [2

sy, (v sin cAts - sin zf) +

A (v cos o,t_ - cos z.)] - Azf = 0 (4-22)

Xg

where Vv = VA/VB’ the speed ratio of A to B.

B's Switching Suface. For a B switching surzface, the

condition sB = 0 gives
A =0 (4-23)

Using the solution for Xz(t) of Eq (4-6), in terms of

the final states and co-states and the switching time, the
B switching surface is given by

A, <« RB[XYf {sin ze - sin (oBts . zf) +

I¢

Axf (cos z2; - cos (ogt, ¢ 2¢)] = € (4-24)

The additional free time condition of Eq (3-23) must also
hold for the B switching surface and gives
(X‘,Ys - xysxs) % ‘(VB(XxS cos x) +

Ays sin xs) - Xxst =0 (4-25)

28
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or in terms of the final conditions and ts

-xfkyf + yfle + Ry[Y + X] - RAXxf =

A { - 1) {o.t =)
= Axf {cos 1p ¢t (or i) cos [GBLS + .f,)

= Ayf (sin zp ¢ (ur - 1) sin (ths + 2g))
g, = OB/OA, the turn ratio of B to A

Singular Surfaces. Singular surfaces are reducerd

forms of switching surfaces; in addition to the switching
functions b2ing zero, at a junction with a singular surface
it is also necessary that the conditions of Eqs (3-29) to
(3-31) are satisfied for A (Eqs (3-33) to (3-35) for B).
Arcs that satisfy these conditions and switch to singular
controls at a point on the singular surface will remain on
it (going backwards in time), until deliberately forced off
(Fig. 5, page 24). Conversely, going forward, an infinite
number of trajectories join the singular arc. The additional
condition of H = 0 reduces the dimension of the surface to
three, and thus a surface in the state space.

A's Singular Surface. For an A singular surface,

Eq (3-29) gives
(4-27)

Using the solution for Xy(t) given in Eq (4-5), in terms
of the final conditions and the switching time the singular
condition becomes

Axf sin o,t_ - ny cos o,t <0 (4-28)

The free time requirement still exists; substjtuting

26
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!
}
C) Eqs (3-28) to (3-30) into H = 0 gives

1]

Is
= + cos z_-Vv=0 (4-29) !

B s

This is the equation in state space of the A singular

-~

surface. Arcs that intersect this surface and satisfy the
singular switching conditions of Eq (3-28) to Eq (3-31)

switch to singular A control, arnd remain on the surface,

e e

with their trajectories given by Eqs (4-7) to (4-12).
In cerms of the final conditions and switching time, Eq

(4-29) becomes

-' -
Vy/0g) - x sin Opt ¢ Yg COs Ot ¢

RB cos (oAts - z£) + RA sin (1 - cos oAts) =0 (4-30)

B's Singular Surface. For a B singular surface,

Eqs (3-32) and (3-33) give

A = 0 (4-31)
and kxs sin 2 - Ays cos = 0 (4-32)
which in terms of the final conditions and tg become

A =0 (4-33)

bt

and Xx sin (osts . zf) - A

¢ Ye cos (opt ¢ z.) =0 (4-34)

As for A, the free time requirement must be satisfied, and
substituting Eqs (3-32) to (3-34) into H = 0 gives a B sing-
ular surface in state space as

(ys cos z_ - x sin zs)RA + (1/v) - cos 2= 0 (4-35)

In terms of the final conditions and ts' the condition is

27
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Vp/o, - [xg sin (OBts‘zf) < (v
(4-36)
RA) cos \:Btsozf) + RB {1 -~ cos oBts)] = G

In Chapter III page 20 it was shown that the only
possible conditions for both A and B to be singular at the
same time were v(t) = 0 and z(t) = 0, Substitution of this
into the equations for the singular surfaces (Eqs 4-I5) and
(4-35), with Op = 0 and op * 0, gives v = 1. This implies
that unless the speeds of A and B are the same, the joint
singular case does not exist and a direct tail chase, head-
on, or tail-to-tail will not occur, other than instantar-
eously.

Dispersal Su-faces. From Appendix A, the major re-

quirements of points on a dispersal surface are that two or
more paths, with differing control combinations on earhd,
intersect, and that the payoff at termination is the same
for each path. For two paths this condition can be expressed
as
= X = X (4-37)
¢1 = 02 =0 (4-38)

where x_ , and x are the state vectors of each path at
=S, =s,

the dispersal surface, and °l and 02 are their respective

terminal payoffs. If paths travel directly from the dis-

persal surfice to the terminal surface without switching

controls, as shown in Fig. 6, then using the closed form

solutions for states and co-states over each constant control

arc, the dispersal surface can be expressed in terms of the

28
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Dispersal Point lDS

— ———
—

© O
> ~n
jee
1=
\

Dispersal Surface (DS)

Terminal Surface (TS)

Fig. 6. Characteristics of Dispersal Surfaces

terminal conditions as

x - x e £ (X, , X, ¢, ,8,)=0
2: ls 1 fl —fz ls 2s

Y, =Y, = f,(x B Xe sty ,t,) =0
2 1 2730 2,0 C1 0 T2,

z -2 = f (x Xe , t, ,t, ) =0
2 1 3%=£,0 2f, 1,0 "2

and .l.‘-

f(x. )
f)

f(gfz)

(4-39)

(4-40)

(4-41)

(4-42)

(4-43)

f - T® o e~

it
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where tls and tzs are the times of intersection aloug paths

1 and 2. Equations (4-39) to (4-43), together with the free
time condition for each path, the terminal constraints, and

the transversality conditions, fully define a dispersal sur-
face. A more condensed form was not found; however, the

above was used as the basis for a numerical search for the

dispersal surface.

Solutions at the Terminal Surface

To complete the solutjion, trajectories and surfaces
in the game space are analyzed backwards from the terminal
surface; the first step is to find the controls at the TS,
and any intersections with other surfac=s.

Controls. For the controls at the TS, the condition

of Eq (4-19) gives

S, = A_ ye - A, xo = A = -2 - A
A xg £ Ye f zf ef LS

S = A
B zg

Substituting in the transversality conditions of Egs
(3-21) and (3-22) for the co-states, results in

S = -b/2 sin 8

A (4-46)

f

Sy * % sin (z; - 0,) (4-47)

Using the conditions of Eqs (3-26) and (3-27) the nonsingular
controls on the TS are

for 0 < €, <

%, " Uamax ]

Af
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= UAHAX for -m < 9f <0
Upmax for 0 < (zf-ef) <

= UBMAX for - < (zf-ef) <0

This control distribution is shown in Fig. 7 (page 32°.

As Lynch points out (Ref 9:191) the controls are the exact
opposite of those produced in the classical barrier problem.
In this case, with the generalized payoff, A is turning into
line of sight A to B, and B is turning into line of sight

B to A. lence using this payoff, the terminal controls are
aggressive. In a defensive position, each aircraft continues
turning when at the opnonents kill range, in an attempt to
increase angle off and aspect angle and maneuver into an
attacking position.

TS Switching Surfaces. The points on the TS where

the switching functions S, and SB are zero are intersection

A
points of the T5 with switching surfaces. The lines of

intersection thus formed are shown in Fig. 7 and are given

0 + A switching line of ef =0, %x; for -m <z <
0 + B switching line of (zf-of) = 0, m; for (4-49)

-% < ef < ¥

1f SA = 0 or Si = 0, the possibility exists for singular
arcs to terminate on these switching lines. For A, the

singular condition of Eq (3-29) with ef = 0, % aives

$p = -VAlef/L

31
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~— %2"Yauax A= Uanax

Fig., 7. Controls at the Terminal Surface
Substituting in the terminal conditions of Eq (3-21)
results in

. aVA sin e
SA = — (4-51)

Using this, A's controls along the switching lines Of =0,
% are
aA(tf ) = -uAMAX for 0 < LPI

for -w < ze <0

-) = o0
oA(tf AMAX
oA(tf) = 0 for L P o, w
Hence the onrly co-ordinates at which an A singular arc can

terainate at the TS are (0, 0), (0, x), (v, %) (w, 0). For

B, the singular condition of Eq (3-33) with (z¢ - Of) =0, %
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Sp T (4-53)

Substituting in the terminal conditions of Eq (3-21) results
in -bV, sin 8

Sp = ___E_7t___£ (4-54)
and B's controls along the switching lines

m are

oplte ) = for 0 < B, < =

BMAX

cB(tf ) = -Upnax for -w < ef <0

GB(tf) = 0 for ef =0, n

Hence the only co-ordinateson the TS at which a B singular
arc could terminate are identical to those for an A sing-
ular arc. This implies that singular arcs only terminate

at the TS when both A and B are singular, The further re-
quirement of equal speed (page 28 ) virtually eliminates the
possibility of singular arcs at the TS.

TS Singular Surfaces. The A and B singular surfaces of

Eqs (4-29) and (4-35) may intersect with the TS for certain
values of the game parameters. For A, substitution of the

terminal constraint into Eq (4-29) gives

L sin ef + cos z. - v=_0 (4-56)

for the intersection line. The position of the line will

vary with L, RB’ and v as shown in Fig. 8 (page 34 ). This




Fig. 8. Projection of A Singular Surfaces in zy plane

is because the singular surface given by Eqs (4-29) and
(4-35) are necessary, but not sufficient, for singularity.

In this case, a terminal cost gives transversality conditions
which must also be satisfied for a singular arc. This
reduces the A singular surface to a curve in the state space
which is very unlikely to intersect the TS. A similar argu-
ment applies for the B singular surface.

TS Dispersal Surfaces. The switching lines for B given

by Eq (4-48) also satisfy the conditions for a dispersal

surface (in a limiting sense) given by Eqs (4-39) to (4-43).

Thus the lines T, - Of = 0, * are the intersection of a B

dispersal surface, because only B has a choice of controls.
Similariy, the only positions on the TS at which A has 2

dispersal condition are (0, 0), (0, ¥), (w, 0) and (w, =®).
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(:> These co-ordinates also lie on the B dispersal line and thus

= B e e - -
- Pt e e~

represent points of '"double choice" or "mixed strategy"

between A and B.

's {
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c; V. Analysis of the Solution in the Large

P - — e i

To complete the full solution of the game, it is

necessary to locatz the game surfaces, and analyze the way

—
—

[ in which they partition the game space. The method consists

"' of constructing trajectories and surfaces backwards from

the terminzl surface. The application of this method using

the closed form solutions is presented in this chapter.
Two techniques are used in the analysis:

\ 1. Surface Solutions in Closed Form. The closed

' ' form solutions for surfaces, though mostly transcendental
in the switching time, can be solved numerically. How-
ever, the solution does become very complex if the

<:> surfaces are connected to the terminal surface by

2. Trajectory Analysis. Trajectories are constructed

t

]

]

! trajectories consisting of a number of arcs.

H

3 backwards from isocosts on the TS. The conditions of

! Chapter III pages 19 to 20 are used to switch controls,

‘. thus generating trajectories composed of a number of -
‘ ﬁ:' srcs. The global optimality of these trajectories is

} uncertain until surfaces can be isolated by parancter-

ization and projection of a large number of trajectories

(Refs 10, 11).

The advantage of the first technique is that it gives the

! surfaces directly, though vith difficulty for surfaces not

)
t
| .

<:> jectories can be plotted to allow visual interpretatior;

clese to TS. The second method has the advantage that tra-




GA/MC/74-1

though this is very long and tedious, and of doubtful ad-

vantage for problems modeled with more than three dimensions.

General Trajectory Patterns

In order to select some typical parameters for more
detailed analysis, the second technique was used to indicate
the general pattern of trajectories for various game para-
meters. The following main observations result:

1. Singular arcs occur and do not intersect the TS,

thus confirming the results of Chap IV page 33.

2. Some trajectories appear to contradict actual

experience; for example, as shown in Fig. 9 (page 38).

as B overshoots he is turning away froam A, rather

than inwards as aight be expected.

3. As shown in Figs. 11 and 12 (pages 40 and 41 ),

many successful terminations result from trajectories

that correspond to a scissors maneuver (Ref 7:62).

4, To be as realistic as possible, and comparable

with other work, specific parameters selected for more

detailed analysis are

Vv, = 800 ft/sec U

A = 0.2 rads/sec

AMAX

giving

R, = 4000 feet

A

vV, = 720 ft/sec U

3 = 0.24 rads/sec

BMAX

giving
RB = 3000 feet
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Thus the velocity ratio v = VA/\’B =2 1,1, and the

control ratio UBMAx/

L = 2000 feet, and each aircraft is assumed to need

UAHAX = 1,2, The weapon range is

boresight to within approximately + 10° at an angle
off of within approximately + 40°; this gives
¢A = 0.02 a=0.2 b =1.8
defining A's success, and
¢B =198 a=1.8 b=0.2

defining B's success.

The general pattern of trajectories using these game
pars=meters is shown in Figs. 9, 10, 11, 12 and 13. All of
these trajectories terminate on the upper half ((zf - ef) >0, w)
of an isocost, and because of inverse symmetry about zf - efa
0, ®, they are sufficient to show the behavior of trajectories
terminating on the lower half. A lag ending for A is con-
sidered as LS > ef >0 or LS < ef < 0. A lead ending for A

is considered as zg < Gf >0 or zg > Bf < 0. Note also that

8¢ = 0 is the boresight condition for A (Fig. 1, page 8 ).

Application of Surface Solutions

Y

Analysis of the trajectories in Fig. 9, shows that
the A singular arc is joined to the TS by one further arc.
Consequently, the closed form surface technique is applied
to locate the exact point at which the singular arc ends,
and the point on the TS at which the singular trajectories
terninate. This is repeated for a number of costs, producing

curves that represent the end of singular arcs in the ganme

= TP o e wmeme— w -

g




sday anindulg vy 3O S3uUL0g pul o4y U uorlersey [ *d14

L01XX

GA/MC/74-1




GA/MC/74-1

space (Fig. 14, page 44 ), and the termination of singular
trajectories on the TS (Fig. 15, page 46). Curves are
generated for verious weighting factors.

End of Singular Arcs. Fig. 14 shows that if A's success

is strongly oriented to boresight (small "a" and low 6_ range),

£
then A turns out of his straight dash into B earlier (and farther
away) than he would for termination rcquirements of a small
aspect angle well off-boresight (large '"a" and low (zf - Gf)
range). Also, as the cost decreases to zero, there agpears

to be a lower limit on y. This is found by using Eq (4-29)

for an A singular surface. All the singular curves must¢ lie

on this surface, so that for Sp >0

y = (v-1) RB and z = 0 (5-1)

min

For the parameters used, vy is 400 feet and this agrees

min
closely with Fig. 14. This indicates that B has to be at
least that distance off to one side for A to go singular.

Termination of Singular Trajectories. The gzeneral

pattern of trajectories in Fig. 9, (page 38 ) suggests that

8 large nuaber of trajectories result in a singular arc,

which itself terminates, via one more arc, at one point on

the TS. Thus the terminal curves of Fig. 15 are lines on

the TS wherc termination occurs from a large number of starting
positions. The lines extend over a very much lower range

cf ef than the total range of ef possible for a given cost.

For example, if a = ¢.2 and ¢ > 0.02, then from Eq (3-3)

] o, | € 12.6%, whereas Figx. 15 shows tha: the sinpgular

45
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trajectory terminates at Of » 2.0°. However proximity to

boresight is gained by A at a cost in angle off (zf) which

is high; indeed for low values of "a", the singular curve
gives values of L close to the maximum for a given isocost.
Thus Fig. 15 can be used to select weighting factors and costs
to represent the angular requirements, at a given range, of
differing weapon systems. The drawback in using these tra-
jectories is that they may be globally non-optimal for the
solution in the large; this requires further consideration of

the game, and is dealt with in Chapter VI.

Application of Trajectory Analysis

Before attempting to parameterize, trajectory projec-
tions are analyzed for the existence, and general position
of switching surfaces, singular arcs, and dispersal surfaces.
As the scissors trajectories illustrate, points on switching
surfaces exist in large numbers, and considerably complicate
trajectory analysis,

B Singular Arc. As shown on page 45 2 singular arc
for A (and its symmetrical counterpart) is fouud for tra-
jectories that terminate with some lag for A ((z¢ - ef) > 0).
A singular arc was also found for B, as shown in Fig. 10,
page 3% ). Hlowever as this arc is connected to the TS via
two other arcs ((uA <0, 0

>0), (g, >0, 5, >0)), aB

B B
singular closed form solution has not been attempted. An
interesting observition is that the arc is degenerate in the

ssnse that nomsingular arcs joining it onone side ave almost
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pavallel in the xy projection (Fig. 10). The B singular
arc thus resembles what Isaacs calls a semi-universal surface
(Ref 8:196). This can be shown analytically by considering

s singular and a nonsingular arc backwards from a point EB

(tf = 0) on the singular arc. The singular arc state solutions
given by Eqs (4-7) to (4-9) are cubtracted from the nonsingular
arc state solutions of Eqs (4-1) to (4-3) giving the following
differences in states at a time t backwards along each arc

from Xg

aBt
- - - N -
Ax(t) = cos (—7- (zB oAt)) RA sin cAt
(5-2)
- oAt)

OBt
sin ("'2_‘ + (ZB - UA)t) -

- 0,t) (5-3)

Az(t) = (5-4)

The possible nonsinguiar-arcs are Oy * * 0.24 and 9, =-0.2;
so that for t < 3 secs, oBtIZ is small and Eqs (5-2) and
(5-3) can be approximated by

Ax(t) % (RBoBt - VBt) cos (zB - oAt) - RA sin oAt (5-5)

Ay(t) » (RBoBt - VBt) sin (zB - oAt) (5-6)

Substituting o_ > 0 gives

Ax{t) x -R, sin o,t where 0, < 0

A A A

Ay(t) X 0
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Thus for low values of t, there is only a small difference

in the x and y co-ordinates between the B singular arc and the
nonsingular arc joining it with positive B control. This
confiims the trajectory plots of Fig. 10, However, as for

the A singular case, there still remains the question of
global optimaiity for these trajectories.

Dispersal Surfaces., Direct closed form solutions

for dispersal surfaces are not 2vailable, but analysis of
trajectory projections from the limiting isccost indicates
some possible points on a dispersal curve. The locations
of some DS points are shown in Fig. 9 and 13; these are
special DS points representing a choice of control for ,oth
A and B. Considering the points in two groups:

1. A

i and Bl' The points Al and Bl are similar be-

cause they probably both lie on the closest DS to the
terminal surface, and are thus likely to lie on the
bounds of a closed region of the game space (Pef 6:31).
(For a two dimensional problem this is definitely so;
for 2 three dimensiosnal problea, closure does not
necessarily occur). Inside these regions (for point
Bl) success for A is inevitable fer optimal play,

regardless of B's actions. Thus point B, appears to

1
be the closest that B can reasonably allow A to ap-~
proach, in a direct tsil chase situation, before turning.
1f B delays, then A's success is inevitable, and B's

condition st capture becomes worse the longer he waits
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to turn. A similar situation occurs at Al for A with
respect to B's final success.

A, and B_. ith the Az, B, dispersal points, it is likely

2 2
that they do not lie in the first DS that the generating

i
4

trajectories intersect. So for a straightforward game
of pursnit and evasion with no role change, these points
are likely to be in part of the game space which results
in a draw in optimal play.
The location of these points and the DS points on the 7S
(page 34 ) will enable dispersal curves to be located for a
given isocost; either by parameterisation of many trajectories,
or by using a numeri;al search technique, based on the DS

conditions on page 29 , to extrapolate from a known DS point.

Summary

In this chapter, the closed ferm solutions are applied
ir an attempc to solve the problem completely. Two techniques
are triecC: direct application of the closed form surface
solutions, and analysis of trajectories. Some general tra-
jectory characteristics are observed, in particular, the
correspondence of many traicctories to a2 sciscars maneuver.
Precise location of A singular arcs enables some criteria
to be set for selecting the payoff parameters to match various
weapon capabilities. A singular B arc is found, and an inter-
esting approximation to a semi-universal surface is confirmed.

Finally’some points on dispersal surfaces are located, and two

methods for locating the surfaces are suggested.

P
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Success in fully defining the game space is limited,

largely by time. It does however make a start and lead the

way to a complete solution of the game.
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VI. The Role Problem

Until the game is completely solved, analysis of the
role problem is limited. However, in this chapter, a method
of role determination is discussed. Capture regions can be
determined for the game, and a method is proposed of estim-
ating regions of advantage which assist in role determination
outside capture regions. The results of Chapter V are related
to this concept, and finally the relationship with the clas-

sical game is discussed.

Role Determination

The role determination problem is considered to consist
of two parts:

1. VWhich player has an advantage, and to what extent?

2. Based on the relative advantage, what is now the

objective (the role decision) of each player?
Both parts are inter-related because the degree of advantage
obviously depends on the objectives. From the pilots point
of view, the questions of role are:

1. How good or bad is my situation?

2. What should be my goal?

For example, if the situation is pood, then should the objective

ve to continue, or to escape while that is possible? This

decision is easier if the amount of advantage is high or low.
For example, if one pilot is about to shoot down an opponent,
he is unlikely to flee, and his opponent has little choice but

to vigorously avoid defeat. However, if neither has a distinct
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advantage, then each may remain, or may be able to escape
the combat completely,

The choice of objectives in the role decision problem
also depends on the strategy needed to achieve it. For
example, it may be necessary to risk a close shave with an
opponent in order to reach a position of advantage. The
problem of role is thus very complex,and casts doubts on the
validity oy a zero-sum game., Hcwever, a zero sum game is
easier to handle, and gives some solutions to the role problem.

In principle, for the game as formulated, if the initial
states are known, the outcome is also known (assuming optimal
play by both sides). Thus the game space (G) can be divided

into four distinct regious resulting in the four possible

outcones (page 11). These regions are: RSA (success for A),

RSB (success for b), R B (mutual kill), and R (draw).

SA
Consider a problem, such as this one with the Lynch pay-

off, in which a mutual kill, is effectively nonexistent;

Rsap
if the states are in Roas and A plays optimaily, then the

states remain in Rga for the duration of the game, and tern-
ination occurs successfully for A (¢ < by in Fig. 16, pagesq ).
A sinilar argument applies to B. 1In the other region R, both
players must play optimally for the states to remain in this
region and a draw outcome. If one player does not play optim-
ally, then the states can move closer to a region more favor-
able to his opponent. The boundaries between the regions

constitute "barriers"” in the sense that they are not crossed

in optimal play. (Appendix A, page 74).
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Fig. 16 A 2-D Representation of Regions of Success,

and Regions of Advantage Based on Optimal Play.

A method of role determination now exists for regions

RSA and RSB’

advantage and should press home his attack (i.e., a definite

If x £ Rg,, this implies A has an almost total

pursuer); conversely, B has little hope of avoiding A and
should concentrate entirely on evasion (i.e. & definite evader).
A similar argument applies for x ¢ RSB’

., The situation in the region R, however, is not so clear.
Neither has 2 decisive advantage, nor is under an immidiate
threat. Each player presumably wants to maneuve- his opponent

into his own success region, though conceivably each may wish
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(:} to escape while the going is good., The division of G [

may now be represented by

.
I>

€ RSA + role determined/A's success (capture) region (6-1)

s N {
. R X € RSB + role deternined/B's success (capture) region (6-2)
x € R~ rele uncertain/draw occurs for optiral play (6-3)

. where G = R + RSA + RSB

RSA and RSp are capture regions resulting from this zero

: Yo w: sum poursuit-evasion game in which A is the pursuer, B the

‘ evader, and vice-versa. Thus this game formulation is useful
o in defining regions of extreme advantage and disadvantage

» {(indeed complete success under optimal play by the pursuer).
These recgions may be very small if the combatants have a
similar performance (Ref 6:32), and conscquently, it is im-
portant to cxtend the role problemn into the region R. The
apparent choice of objoczives in B suggasts a non-2¢70 sunm
game; hewever, the problien here is whether the zere sum gane
and payoff, as formulated, can he used in this region to de-

termine role.

Regions gg Advantage

The first part of the role problew in R is to deternine
rszions of advantage.

One nethed of producing these regions is to expand
the solutions outwards from the successiful limits, by changing
he termingd ¢ 3 N ! 't ' < B
the tsrminsl fosts te OF and éa (OA éA and ¢ 68) As

shoun &r Fig. 16 {page 51 this would result in expanding around

; e e e et oot -

b.,
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the success regions RSA and RSB'

indicate states which would result in a draw under optimal

These expanded regions

play for the game as formulated. The term draw is misleading,
since it may include a wide range of terminal states: fronm

a close shave (¢ » QA), to a head on (¢ = neutral outcome,

¢N)ﬁ However, if ¢A < ¢ < 05 is considered a good “raw outcome

for A, and qé < $ < OB is considered a good draw outcome for
B, then the regions that result in these outcomes may be con-
sidered as regions of advantage.

The drawback with this method is that cn indecisiva
catcome results, and the game continues indefinitely. Also,
the assumption that a draw outcome close to A's success
area is> good for A and piaces him at auw sdvantage, is not
necessarily true. Indeed, it may be thav if A just misses
B, then A is at a grave disadvantage {for example, on an
overshoot). This sethod is useful however, because the regions
of advantage generated represent the extent to which an
opponent could avoid a kill, should he wish to, by playing
optimally.

Another method avoids the draw outcome, but uses tra-
jectories which are non-optimal in the strict sense of the
game as formulated,

Consider that in a region of advantage to A, his objective
is to minimize ¢, and B's objective is to allow A to cone
very close to success, in the hope that by doing so, B will
move into his own region of advantage. In other words B is

deliberately allowing himself to be drawn close to A's

$6
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capture regions, RSA (this may also occur if B wants a draw,
but keeps making mistakes). This strategy is non-optimal

in the game as formulated; indeed B is virtually playing a
non-zero game by co-operating (at lteast for a time) with A's

abjective. Consequently, trajectories resulting in R (or

SA

extending frem R in a backwards solution) are non-optimal

SA
for B; nevertheless, they do represent almost the best that
A can achieve, with B co-operating or making mistakes. Thus
these trajectories may be used to indicate general regions of
advantage to A. Because player B is, at least temporarily,
helping his opponent, the resulting regions of advantage are
e..pected to be large.

A region of advantage for A may now be defined by these
starting points in R for which A is successful, if B, either
cannot avoid A's successful outcome, or is using a strategy

which would result in A's success (conversely for B). This

gives

1

€ RAA iff B plays m¢ < ¢A (6-4)

X € RAB iff A plays to ¢ > ¢B (6-5)
: ' Al
where RAA is A's region of advantage, and RAB is B's
region of advantage. The posstbiiity also exists that the
regions of advantage may intersect (RAA n Ryp # 0).

The first part of the role determination in R problenm

is now
X € R, + A's advantage (6-6)
- AA
xe RAB + B's advantage (6-7)
X € {RAA n RAB) + Advantage to both (6-8)
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Fig.-17. A 2-D Represeatation of Regions of Advantage

Based on Non-optimal Play.

and is shown in Fig. 17, page 58 . It follows that

) Rea € Raa

Rspg © Rag

To be complete, if R and RA do not fill R (RAA U RAB £ R},

AA B

then x ¢ (R~ U Ryg) * no advantage to either.

The second part of the role determination is to decide
what the objective should be. For example, if B is in A's

region of advantage, R A should he play optimally for the

A
temporary respite of a draw, or should he allow himself to g=t

close to A's success region, Rg,, in order to put himself in a
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good position. Conversely, should A continue to make the
most of his advantage and vlay towards a kill. Both may
decide, if able, to 2scape. Clearly, this nroblem requires
other game formulations.

Repions of Advantage and tke Dispersal Surface. The

game formulation gives trajectories and surfaces backwards
from an isocost °A on the TS, hence regions of success

and advantage (as defined above)} should emerge. Looking at
the game in this way, dispersal surfaces do not terminate
trajectories, 3lthough they still are used to en.sose regions
of success and advantage. Consider a 2-D example shown in
Fig. & (page 29 ), with a DS point XDS on a trajectory
leaving the TS fron ¢A. Continue along the trajectory from
XDs to Y. For the game as formulated the path YXDS is
strictly non-optimal because YZ results in a better value
(°z) for B. Thus point Y lies in the region R, and XDs

defines a point on the boundary of A's success/capture

region, RSA’ However, if B accepts the outcoie ¢ < °A’ then

YX may be used to indicate A’'s regions of advantage RAA'

Results and Role Determination

As suggested in Chapter V, it is likely that DS points
A1 and Bl of Figs. 9 and 13 are on the surface that encloses
the success regions Rea and Rgp Thus, as expeccted, the
capture regions thenselves are relativaly small (Ref 6:46).
Trajectories extending beyond these points show a general

pattern; virtually all of B's successful trajectories are
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forward of him, are within his weapon range on either side,

and are cvershoot scissors trajectories. This general pattern
is a reasonably valid result for a slower more maneuverable
machine. On the other hand, A's successful trajectories

cover a larger part of the x-v plane, are not so often scissors,
and include singular "catch-up" arcs. Here again the general
pattern is consistent with the faster aircraft. Furthermore,
the trajectories show that A has a larger region of advantage
than B. Intersection of RAA and RAB also seems likely to

occur forward of A's terminal area.

Consider again the DS vwoint B, (Fig. 9, page 38 }; if

2
B decides to avoid, one of the ways he could do so would
be to remain on % collision course and accept a neutral ¢

(i.e. play optimally in the homerthst A will do likewise). How-

ever, if he decides this is not good enough, and tries to

maneuver into an attacking position, he may first be obliged
to accept a close shave from A by entering, and holding a
turn along & trajectory terminating in °A’ Then A, having
missed (hopefully) and overshot, gives B his opportunity.
¥hether this maneuver is the best for B is uncertain, what
can be said however, is that as 82 lies in the region R, and
on a °A trajectory, it is a voint in the surface of A's
region of ndvantag? Raas The indication at B, is that that
peint is in RAA for all anples off, 2.

A different situation arises at point By (Fig. 9, page 38)

here B is overshooting A and is turning outwards. This seenms
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contrary to experience because he is so close to the TS that
by turning in, it apnears he could easily achiecve a draw out-
come of ¢ > OA' and get into an advantageous position. The
implication is that tnis part of the trajectory lies in R,
and indeed on the surface of RAAa ilowever, here the region

of B's advantage RAB’ extending forward from B's success

regicn, is very close. Thus B, by turning in at B3 is likely

to move into RAB a lot quicker, and certainly with less dan-
ger, than following the trajectorvy that results in °A’ and
accepting a close shave.

One more example further illustrates that, although

$

A trajectories in R are uscful to locate regions of advant-
age, they are not necessarily the best strategies for either
of the players. Their strategies will result from the role
decision problem. Consider a scissors maneuver in which A

is overshooting (Fig. 13 page 42 ), it is likely that most

of the trajectory is in R, and defines Rppi however, as such,
A is not obliged to accept the scissors as being the best

way of regaining the advartage (although he may be so obliged
because of limited information etc ), Indeed some temporary
draw outcone (created by say, a singular dash) could possibly

get A into his region of advantage R A faster, and in less

A

danger, than continuing to B's success region R and finally

SB’
08” This trajectory is a "degencrate scissors" in the scase
that B's movemcnt about A's longitudinal axis is small. Further

investigation may reveai a sinpular arc here. Thus the
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results show that:
1. Using trajectories beyond capture regions is

useful in establishing regions of advantage on

which role decisions can be based.

These trajectories are not necessarily the best

way to move from one region of advantage to another.
A full solution to the game is needed to confirm the prospect
in subpara 1. and throw further light on the problem in sub-

para 2.

Relation to the Classical Game

It is interesting to relate the results of this ganme
to the classic game formulation and resulting barriers (Ref 3).
Using Lynch's work on barrier closure (Ref 9:106) it was
found that, with the parameters used in Chapter V for detailed
analysis, barrier closure did not occur. Thus B has no
chance of escape (for 0 < tf < », and capture defined as B
simply crossing the TS), and conversely A can always do so
(at least when outside the TS).

Thus the general pattern of trajectories and areas of
tdvantage found using the Lynch payoff without time, agrees
with the classical formulation. However, the introduction
of a payoff that reflects a desire to remain in combat rather
than escape appears to have created capture regions fcr both

A and B and altogether nade the model richer and more realistic.

Summa,y

The game of kind formulation from 2 terminal payoff
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car be used to determinc capture regions and to indicate
regions of advantage. For the capture regions, role is
determined. The regions of advantage are useful for nmaking
role decisions, but do not indicate the actual strategy to
use. Results so far confirm this, but the conmplcte

solution to the game is reauired. The classic game gives

the same basic results in a degenerate form.
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VII. Conclusions and Recommendations

Conclusions

The primary objective of this thesis was to study
the application and validity of the generalized Lynch pay-
off to the probler of role determination in a free time,
zero sum, perfect information differential game model of 2
two aircraft combat. The secondary objective was to establish
techniques for using the payoff in simple dynamic nodels.

A constant speed, horizontally planar dynamic model
was used, and time was dropped from Lynch's payoff. This
resulted in valid controls at the end of the game, and
closed form solutions were derived for the terminal co-states,
for the states and co-states along constant control arcs,
and for switching and singular surfaces at junctions. These
solutions were then used directly and indirectly to partition
the game space outward from the terminal surface. This was
not fully achieved, though isolated singular arcs were ident-
jfied and confirmed for tnis type of game, and their location
and termination in relation to various payoffs was found.
Some dispersal points were located, which gave an indication
of partitioning and capture regions for each combatant. A
strong boost to the validity of this approach are trajectories

that correspond to practical scissors mancuvers. Unfortunately,

much of the length of these trajcctories are likely to be

non-optimal for the game as formulated; however, 2 technique
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was proposed, using these trajectories and their intersecting
surfaces, to estimate regions of advantage for each player. A
comparison with Isaacs' classical barrier formulation agrees
broadly with the general pattern of trajectories produced
by this formulation.

Hence the thesis has achieved both objectives to
some extent, and enables a limited main conclusion that the
Lynch payoff, in its terminal form, shows some pronise
for producing solutions for simple dynanic models that bear
some resemblance to actual combat. Furthermore, the payoff

can handle a wide range of weapon systenms.

Reconmendations
This thesis should definitely not be regarded as
approaching a reasonably valid differential game model of
aerial combat., Not only must the solution in the large
be fully completed, far too many important factors have had
to be assumed away, in order to make some initial progress.
Consequently, there are four main recommendations
for further investigation:
1. The complete partitioning of the game space
and full investigation of the use of advantage
regions in roie determinavion. This will involve
refining techniques for the location of the game
surfaces.

The effect of including time in the payoff and the

interaction with other game formulations, in
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particular a non-zero sum formulation.

A full parameter investigation of the solution

behavionr,

The extension of the game model to include factors
such as restricted information, and the extension
of the dynamic model to include variable velocity

and altitude.
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Appendix A

Differenti ' Game Theorv

Purpose

The purpose of this appendix is to summarize
differential ganme theorv apnlicable to the two person,
zero sum, perfect information pame considered in this study.

Refearences 1, S and 8 form the basis of this summary.

Game Formulation

Two players are constrained by their dynamics to

x = f(x, u, v, t), 2(t 5 = x (A-1)

where » is the n - dimensional state vector, u is the n -
dimensicnal control vector of cne nlayer, and v is the p -
dinensional contral vector of the other. For simplicity,

consider u and v each to be one-dimensional. Botrh u and

* may be subject to comstraints. The players may also

kave to satisfy 3 terwinal constraint.

w(x (tf), tf) = 0 (A-2)
A cost function (pavoff) is defined as
tf
J=olx a0, t6) of L (x,m, v, t) at (A-3)
to

and the aim is to find the controls u® and v® such that

J (u®, v) <J (u*, v") £ (u, v) (A-4)
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If u® and v°® can be found, the pair {(u®, v®) is called
a sa2dle point of the game, and .1 (u® v°) is called the

value.

Necessary Condiriuns for a Solution

The existence of a solution depends on the comnutative
condition that

min max J (u, v) = max nin J (u, v) (A-5)

u v v u

A necessary condition for a saddle point is that

the Hamiltonian (H) defined as
H(x, A, u, v, t) =AY £ ot (A-6)

nust be minimized over the admissable set of u, and
maxinized over the admissablie set of v, such that

H® = min max H = max min H
u v v u (A-T7)

giving, if there are ne control constraints

Hu 2 0 and Hv =0 (A-8)

The commutative conditiun of Eqs (A-S5) and (A-7)
is satisfied if H is scparanle for u and v. If u and v

appear tinearly in il and are constrained by

lul < Upgy 309 fvl < Vaax (A-9)
with switching functions Sy and Sy defined as
Su (x, A) = “u and Sv (x, ) = "v (A-19)
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The saddle point controls are given by

*
ut o= oup oy if Su <0
u® = -u if s >0
nax u (A-11)
v® = vy if s >0
max v

v® = -y if s <o
max v

Where there are no state demendent control constraints, the
n - dimensional co-state vector X is given by

A o= -H (A-12)

subject to the transversality conditions

A(tf) « ¢, (tf) + v v, (1) (A-13)
H(tf) = ot (tf) « v Et (tf) ) (A-14)
where v is a constant nmultiplier.
If time does not appear explicitly in either H
or the control constraints, then H is constant. Also,if
the problem is one of frec final time then Eq (A-14)
implies that
H(tf) = H (t) =0 {A-15)
If u and v are expressed as functions of time and
the initial states, then this is an open loop solution.
If they are expressed as funcrions of time and the instan-

tancous states, then the solution constitutes 2 closed

loop law.

1
|
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Singular Controls and Surfaces

When the controls u and v apnear linearly in H
the possibility of solution arcs with singular controls
exists. Using the switching functions defined in

Eq (A-10), M may be arranged as
H=2" g (x)«Su~sv
- = u v

Taking the case where Su = 0, H then becones
independent of u and thus minimization with respect to
u is not possible. Similarily for v, if Sv = 0. However,

a necessary condition for a solution on a singular arc is

. 2g-1
= B e - -17
S, (x, 1) = 5, (x, Su (x, ) = 0 (4-17}

vhere successive differentiation yields a function

2
‘-

S, (x, A, u) =0

which is explicit in u and may be sclved to yield a
candidate for u” on the singulsr arc, Thisx must salisfy

the generalized Legendre-Clebsch ceadition

(-l)q ua_ (Suzq) 1 0
3u

and st junctions with nonsingular arcs, the condition

2q
i’-(s ) <o
3u v

junction time

Rust also be satisfied.
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Equation (A-17} gives a singular surface of dimension
2n - 2q in (x-1) space; with the additional constraint
of £q (A-15), in a free time problem the dimension becomes
2n - 2q - !s If n= 3 2nd 2 = 1 this yields a sirgular
surface in the state space on whichk all singular arcs must
lie. Hence interscction with this surface is a necessary,
but not sufficient condition for switching to a singula.
arc. Another important »roperxty of singular arcs is that

they can be joirned by an infinitv of paths.

Switching Surface

A switching surface consists of points at which the
controls are discontinuous., From Eqs (A-11) and (A-17)

the controls switch only when

S = ¢ (for u), and S_ = 9 {for v)
u v

This condition defines a switching surface in (x-1}
and implies that a singular surface is a particular

of switching surface, also satisfying Eq (A-17).

The Barriers and Gancs of Kind and Degree

Isaacs (Ref 8:35) classisfies games into these of
"kin¢", and those of “degree”. In the game of kind, the
primary interest is whether or not termination (as defined
by the game) cccurs, For a game of deprce however, ternm-
ination is assumed to occur, and the players' objectives

are to hasten or delay termination, or to minimax a
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continuous payoff.

There is not a clear distinction between these classes
of games (Ref 8:230); a game of kind can be regarded as one
of degree in which bounds are placed on the terminal pay-
off. Termination of the gane is then defined as occurring
only when the constraints are satisfied and the payoff is
within the spccified bcunds. In the usual classical forn-
ulation (Ref £), the terminal payolf, in a game of degree,

is the final time (tf), and the terminal constraint is the

circular vregion x2 - yz = sz The game becomes a game of

kind when the bounds 0 < tf < » ase placed on the payoff,

and the only acceptable outcone must be within thess bounds.
Hence the vsual classical formulation of a gaxe considers the
possikility of the terninal constraint ever being satis-
fied. Cames of degree with terminal pavoffs can, in a
sinilar way, be treated as games of kind {Ref 6).

For a game of kind there may be a surface in the gane
called a "barrier”. Iu the classical formulation this
surface consists of those starting points which end at the
limit of 211 possible terminations (BUP), In the more gen-
eral sense, a barrier consists of starting points which
terminate on the bounds ser by the terminal payoff, 1If
the barrier encloses entirely some region of the game space
then the space is divided intoc distinct repions of success

and failure {Ref 3:66).
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Dispersal Surface

There are many other possible surfaces (Ref 8 ).
One of the most comnmon is the dispersal surface, defincd
by

I (Xpg) = 3,y (xpg) = ===y (xp¢) (A-22)

where Iy (505) represents the value of the payoff along the

Kth yossible path from a single point Xpg on the dispersal

surface. Figure 6 illustrates this for a two dimensional
problem with K = 2. Intersection with the dispersal sur-
face thus represents a decision point at which one, or
sonetines both players may he able to choose strategies,
knowing that in either case the payoff will be the same
regardless of the choice., 1In representing the limit of
optimality of a trajectory, it is useful f2r terminating

arcs and bounding repions.
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Appendix B

Derivation of Closed Form Solutions

Purpose
The purpose of this appendix is to show the derivation

of closed form solutions to the game formulated in Chapter III.

Terminal Co-states A and A
xg — “vg

The terminal co-states Xx and A are eiven by

£ Tg
A = °x A = ¢
g £ Ye o Yg
2 (ash) | > .
where $ 3 (a cos (zf Of) + b cos ef) +
v(xi - vi - Lz)
(8-1)
or ] =(3%£)-(a cos (zf-ef) + b cos ef) -
v{ri-iz)

To avoid expressing ¢ in cartesian co-ordinates and taking

partial derivatives directlv, the chain rule can be vsed

giving
Gy = E.x * %Y
or A = L{> cos 8, - A sin A ) (B-2)
Gf Ye £ xg £
X
O¢
and Xxf = (AY{ cot Sf - -~ coscc Of; {B-3)
76
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The minA maxg lH(tf) = 0 condition gives

Ay [VB cos z_, - V ¢ UAyf] +

t £ £ A
'
¢ Xy [VB sin zg - sAxf] . Xz [OB - oA] =0 (B-4)
] £ £
. Substituting
' 1
¢ = = - 5 - i -
, xeF @ef ) (L sin Gf a2 sin (zf Of))
f 1 ard Xzf = @zf = % a sin (zf - Uf) (B-S)

2 and Lq (B-3) into Eq (B-4) gives an equation in terms of

B i Ay ané the final states which can he solved to give

f

A, , e (8-6)
' Ye T3
r O where U = sin 8. (b sin 0.0, - a sin (2. - ;) 7,)

(VB cos z,. - VA)
¥ > (b sin Of - a sin (zf-ef)) I

Vs (VB cos (zf-ef) - VA cos ef)
Substituticn for Ae in Eq (B-3) now gives Ax in terns of
£ €

: Xv and the final states as
f

)Y = [2L ny cos Of - (b sin ef - a sin (:f-ef))]

2L sin 6 (8-7)

State and Ce-state Solutions

Over an arc of constant controls °A and OB' the state

and co-state equations in cartesian co-ordinates are
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VB cos 2z - VA + 0,

VB sin z - ch

with Xx(tf)

with Ay(tf)

A; VB(XX sin z - Xy cos z) with Xz(tf) = Xz

Nonsingular Solutions. For nonsingular arcs with

% # 0 and oy # 0, three solutions are obtained immediately

&s
2(t) = (05-9,) (t-tg) + 2. (8-10)

A (r) = A'sin 7,t + B'cos ot (B-11)
xy(c) = -B'sin 0,t + A'cos 0,t (B-12)
where
12 3 .
A )xf sin cAtf + ny cos O, f
and

t
B'= Xxf cos oAtf - xyf sin uAtf

Letting tf = 0, so that along an arc t < 0, Eqs (B-10) to
(8-12) become
z{t) = (aB-OA) Tz, (B-13)

xx(:) = lyf sin aAt . Xxf cos oAt (B-14)

Ay(t) = -xxf sin gt ¢ xyf cos o,t {B-1%)
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Substituting in Eq (B-9) for z, Ax and Av gives
Xi = VB[Xxf sin (dBt + zf) - Ayf cos (oBt + zf)] (B-16)

and solving with Az(tf = Q)= Az gives
f

f

A (t) => + R (A, sinz_+ A cos z.] -
z Zf B yf xf 3

RB[)‘yf sin (oBt + zf) + kxf cos (oBt + zf)]
(B-17)
or th g .t
Xz(t) = llf -2 RB sin -5 [ny cos (——2- + Zf) +

OBt
Xxf sin (—2— + lf)]

where RB = VBIUB

Finally, for the states x(t) and y(t), a second order
can be formed from Lq (B-8) giving

%e+02xx VB(Z [

A - UB) sin 2z

A
Substituting in the solution for z(t) gives

P 2
Reo 4= Ve(2 o, - o sin [(gg -0 ¢t * zf]

with x(tf = 0) = )

The solution is now straightforward, yielding

x(ty = xg cos uAt * Y sin o,¢v + RB [sin (oAt - zf) +

(B-18)

A
sin ((aB - °A) t + zf)] - RA sin oAt

Differentiation, and substitution for % in Eq (B-18) yields
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y(t) = -xf sin oAt . yf cos cAt + RB [cos (oAt - zf) -
(B-19)
cos ((oB - °A) t + zf)] + RA (1 - cos dAt)
Thus Eqs (B-18), (B-19), (B-13), (B-14), (B-15) and (B-16)
are the nonsingular arc closed forn solutions with tf = 0.

Singular Solutions. Because RA and RB are infinite for

singular controls, the solutions for nonsingular arcs
cannot be applied directly., For an A singular arc, sub-
stitution for o) = 0 in Eqs (B-13), (B-14), (B-15) and
(B-17), and application of the singular conditions Xy = 0
yields

2(t) zp * Ot (B-20)

Ax(t) kx (B-21)

£
A (t A = 0 B-22
y( ) Ye ( )
oyt oyt
Xz(t) Xzf -2 RB Xxf sin —— sin (—7— + zf) (B-23)

Solving the cquations of notion directly with o, = 0 gives

A

x(t) = xf - VA& + RB (sin (zf + oBt) - sin zf) (B-24)

y(t) = Yg - RB (cos (th . zf) - ¢O0S zf) (B-25)

For a B singular arc, substitution of og = 0 into Eq (B-13)

with the singular condition Xz = 0 gives

z(t) = g = O,t

A (t) =) = 0
2 zf
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and Ax(t) and Xy(t) are still given by Eqs (B-14) and
(B-15). Solving the equations of motion directly with

°B = 0 gives

x(t) Xg cos cAt + (yf - RA) sin aAt +

VB: cGs (zf - oAt)
-Xg sin oAt + (yf - RA) cos oAt +

VBt sin (zf - aAt)
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